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Vandœuvre-lès-Nancy Cedex, France5

2 Complexo Interdisciplinar, Faculdade de Ciências, Universidade de Lisboa, Av. Professor Gama
Pinto 2, P-1649-003 Lisboa, Portugal
3 Theoretische Physik, Fachbereich 10, Gerhard-Mercator Universität Duisburg, D-47048
Duisburg, Germany

Received 3 October 2000

Abstract
The one-dimensional reaction diffusion processAA → A andA∅A → AAA is
exactly solvable through the empty interval method if the diffusion rate equals
the coagulation rate. Independently of the particle production rate, the model
is always in the universality class of diffusion–annihilation. This allows us to
check analytically the universality of finite-size scaling in a non-equilibrium
critical point.

PACS numbers: 6460H, 0570F, 8220D

1. Introduction

The physics of non-equilibrium phase transitions in low dimensions is characterized by the
presence of strong fluctuation effects which modify the properties of the steady-state and/or
the long-time behaviour considerably with respect to simple kinetic equations (see [1–5] for
recent reviews). However, and in contrast to equilibrium phase transition, most of the current
understanding of non-equilibrium phase transitions comes from numerical studies of certain
simple models. Integrable non-equilibrium systems are still very rare.

A model which has been met recently with a lot of interest is the one-dimensional pair
contact process [6] with single-particle diffusion (PCPD). This model describes the interactions
of a single speciesA of particles which can undergo the reactions 2A → ∅ andAA∅ → AAA.
If the diffusion constant d = 0, there are a huge number of steady states (forL sites of the order
∼φL, where φ = (1 +

√
5)/2 is the golden mean [7]) and the steady-state phase transition

between the active and the inactive phases is in the directed percolation universality class
[6] (for d = 0, the mean pair density serves as the order parameter which is positive in the
active phase and vanishes at the transition towards the inactive phase). On the other hand,
for d �= 0, there remain just two steady states. There is a general agreement on the location
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of the transition line between the active and the inactive phases (current studies apply either
the density matrix renormalization group [7] or different Monte Carlo schemes [8, 9]) and that
the entire inactive phase should be critical and in the diffusion–annihilation universality class
[10]. However, so far there is no consensus on the exponents at the active–inactive transition.

In order to obtain a fresh view on this problem, we try to find a ‘nearby’ model where
some analytical information might be available. In this paper, we shall study the following
model: particles of a single species move along a one-dimensional lattice. Each site can be
either empty (∅) or else be occupied by a single particle (A). Between nearest-neighbour or
next-nearest-neighbour sites the following reactions are allowed:

diffusion: A∅ ↔ ∅A rate d

coagulation to the left: AA → A∅ rate d

coagulation to the right: AA → ∅A rate d

production: A∅A → AAA rate 2dλ.

(1)

The equality of the diffusion rate and the coagulation rates guarantees the solvability of the
model for λ = 0 through the empty interval method [11].

As will be explained in the following section, the choice of this model is motivated by
the equivalence of simple coagulation and annihilation. Considering the above model on a
finite lattice with L sites and periodic boundary conditions, we shall show in section 3 that
it is soluable through the finite-size empty interval method [12]. We obtain explicitly the
long-time behaviour of the particle density and study the finite-size scaling of the leading
relaxation time τ . We find that for all values of λ, the model remains in the universality class
of pair annihilation and we discuss the physical reasons for this. While that does not provide
any insight into the phase transition of the pair contact process, the fact that λ couples to
an irrelevant operator allows us to test analytically the generalization [13] of Privman–Fisher
universality of finite-size scaling amplitudes [14] in an exactly solvable non-equilibrium model.
Section 4 summarizes our conclusions.

2. Motivation of the model

Although the present understanding of the phase transition in the PCPD is far from being
complete, it is nearly possible to conjecture that the same type of transition occurs in a large
variety of other models. More precisely, we expect such transitions to occur in models without
parity conservation where: (a) solitary particles diffuse, (b) particle creation requires two
particles and (c) particle removal requires at least two particles to meet at neighbouring sites.
Examples of such reaction–diffusion processes include

2A → 3A 2A → A (2)

2A → 4A 2A → A (3)

2A → 3A 3A → ∅ (4)

2A → 3A 3A → A. (5)

A particularly interesting candidate is the coagulation–production process (2). It is well known
that coagulation 2A → A and pair annihilation 2A → ∅ are equivalent and can be related by
an exact similarity transformation (for reviews see [4, 5]). Assuming that this transformation
does not entirely destroy the production process 2A → 3A in the renormalization group sense,
it is therefore natural to expect that the coagulation–production model exhibits the same type
of phase transition as the PCPD.
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Figure 1. Typical temporal evolution of the coagulation–production process. Left, if particles are
created to the left and to the right of a pair the system displays a phase transition similar to that
observed in the PCPD. Right, if particles are created between two particles the model is always in
the inactive phase. The figure shows a typical run for λ = 100.

It is important to note that the production process 2A → 3A in one dimension can be
implemented in two different ways. In the standard implementation particles are created to
the left and to the right of a pair of particles:

• • ◦/ ◦ • • → • • •. (6)

Together with the coagulation process this implementation of the model displays a non-
equilibrium phase transition similar to the transition in the PCPD (see the left-hand panel
of figure 1). In the other implementation of the production process, on which we will focus in
this paper, a particle is created between two other particles:

• ◦ • → • • •. (7)

In this case the model displays a completely different behaviour. In particular, there is no phase
transition. Rather the model is always in the inactive phase where the asymptotic behaviour is
governed by the coagulation process. Even the visual appearance of clusters is clearly different
in both cases, as demonstrated in figure 1. Obviously, the spatial arrangement of the production
process is crucial on a one-dimensional chain. Similar hard-core effects can be observed in
other one-dimensional models with three-site interactions [15].

Figure 2 illustrates why particle production between particles differs significantly from
ordinary particle creation to the left and to the right. The figure sketches the temporal evolution
of a pair of particles for a given realization of randomness. Without offspring production, the
two particles diffuse until they meet and coagulate to a single particle. Adding the process
(7), particles can only be created between the spacetime trajectories of these two particles. In
other words, the pure coagulation process provides a ‘skeleton’. The process (7) generates
additional patches of high activity between two branches, while the skeleton itself remains
unchanged. Moreover, there is no way for the particles to ‘cross’ the branches of the skeleton.
Therefore, the asymptotic behaviour for t → ∞ is governed by the pure coagulation process,
i.e. we expect the density of particles to decay as t−1/2.

As can be seen in the right-hand panel of figure 1, even for high values of λ most patches
with high activity die out after a short time. New patches with finite lifetime can only be
generated if two diffusing particles meet. As these events become rarer as time proceeds,
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Figure 2. Schematic drawing of the temporal evolution of a pair of particles. For λ = 0 the two
particles diffuse until they coagulate, forming a skeleton (bold lines). For λ > 0 particles are
created between pairs of particles, forming a high-density region between the two branches. The
skeleton itself remains unchanged.

it seems to be plausible (and will be proven below) that the model does not exhibit a phase
transition.

Let us point out that the PCPD with production in the middle A∅A → AAA and pair
annihilation AA → ∅∅ does not have these special properties. Moreover, it is not exactly
solvable and exhibits a phase transition similar to the standard PCPD.

It should be noted that the mechanism described above requires that the coagulation and
diffusion rates are equal. In fact, by increasing the diffusion rate, the solvability is lost and a
PCPD transition at a finite value of λ is recovered [16].

3. Exact solution

We consider the model (1) on a chain of L sites with periodic boundary conditions. The exact
solution can be obtained through the generalization of the empty-interval method [11, 17] to
finite lattices [12]. Since we are interested in working out spatially averaged values of the
observables, we can assume translation invariance from the outset. Let In(t) be the probability
that n consecutive sites are empty at time t . Then the mean particle density is given by

ρ(t) = (1 − I1(t)) a
−1 (8)

where a is the lattice constant. The equations of motion for the In(t) are

I0(t) = 1

dI1

dt
(t) = 2d [I0(t)− 2I1(t) + I2(t)] − 2dλ [I1(t)− 2I2(t) + I3(t)]

dIn
dt

(t) = 2d
[
In−1(t)− 2In(t) + In+1(t)

]
2 � n � L− 1

IL(t) = 0.

(9)

Here the boundary condition I0(t) = 1 allows one to take care of the coagulation process in the
usual way, provided that the rates for coagulation and diffusion coincide [11, 12]. Obviously,
the empty lattice

In(t) = 1 0 � n � L (10)

is a trivial stationary state which decouples from all other solutions. Therefore, we restrict our
analysis to solutions with at least one particle. Since the last particle can never disappear, it
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is impossible to have L consecutive empty sites for a chain with L sites, leading to the other
boundary condition IL(t) = 0. For λ = 0, equations (9) reduce to the known ones for simple
coagulation with periodic boundary conditions [12].

In order to understand the λ-dependent term, consider the probability P(n1n2n3) of
realizing the configuration n1n2n3 at three neighbouring sites, where n = • indicates an
occupied and n = ◦ an empty site. In particular, we have P(◦ ◦ ◦) = I3 and P(• ◦ ◦) =
P(◦ ◦ •) = I2 − I3. In addition, summing over the states of the third site

P(• ◦ •) + P(• ◦ ◦) = P(•◦) = I1 − I2 (11)

which yields P(• ◦ •) = I1 − 2I2 + I3. The production of a particle between two others via
the process • ◦ • → • • • only affects I1(t).

The equations of motion are solved through the ansatz

In(t) =
∑
ω

an(ω) e−2dωt (12)

which leads to the eigenvalue problem



0 0 0 · · · 0

1 −2 − λ 1 + 2λ −λ 0 · · · 0

0 1 −2 1 0 · · · 0

0 1 −2 1 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

...

0 1 −2 1 0

0 1 −2 1

0 · · · 0 0 0







a0

a1

a2

...

aL−1

aL




= −ω




a0

a1

a2

...

aL−1

aL




involving an (L + 1) × (L + 1) matrix �̂. The irreversible character of the stochastic process
reflects itself in the fact that the matrix �̂ is not symmetric, while probability conservation
implies that the sum of the elements in a row of �̂ vanishes. Because of these properties, the
real part of the eigenvalues ω is non-negative.

It is easy to see that the solution

an(0) = 1 − n/L ω = 0 (13)

describes the steady state with a single diffusing particle. Therefore, the model has two
steady states, one corresponding to the empty lattice and the other one being the translation-
invariant superposition of all single-particle states with an average density ρav = 1/L. For
the relaxational modes with ω > 0 the boundary condition I0(t) = 1 implies that a0(ω) = 0.
Similarly, the other boundary condition IL(t) = 0 implies aL(ω) = 0. Therefore, we go over
to an eigenvalue problem involving an (L− 1)× (L− 1) matrix if ω �= 0


−2 − λ 1 + 2λ −λ 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 0

...
. . .

. . .
. . .

. . .
. . .

...

0 1 −2 1 0

0 1 −2 1

0 · · · 0 1 −2







a1

a2

...

aL−2

aL−1




= −ω




a1

a2

...

aL−2

aL−1




. (14)
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Equation (14) is solved through the ansatz

an(ω) = Aeikn + Be−ikn ω �= 0 (15)

which leads to the dispersion relation

ω = ω(k) = 2(1 − cos k) (16)

and the allowed values k are obtained by inserting the ansatz (15) into the first line of
equation (14) and taking the boundary condition aL(ω) = 0 into account. This leads to a
system of two equations,

A
(
λ

(
eik − 2e2ik + e3ik

)
+ 1

)
+ B

(
λ

(
e−ik − 2e−2ik + e−3ik

)
+ 1

) = 0

AeikL + Be−ikL = 0

which has a non-trivial solution if k is a solution of

tan kL = 4λ sin(2k) sin2(k/2)

4λ cos(2k) sin2(k/2)− 1
. (17)

We call the solutions of (17) km, where m = 0, 1, . . . , L − 1. Having found these, we can
write the final result for the empty interval probabilities In(t) in the form

In(t) =
(

1 − n

L

)
+

L−1∑
m=0

Cm sin (km(n− L)) e−2dωm t (18)

where ωm = ω(km) = 2(1 − cos km) and the Cm are real constants which must be determined
from the initial conditions. For example, for an initially fully occupied lattice, one has
In(0) = δn,0. If we insert the values of km into (18) and use (8), we obtain the average
particle density as a function of time.

Closed-form solutions of (17) exist for λ = 0 and λ → ∞. We find km = mπ/L for
λ = 0 and km = mπ/(L− 2) for λ → ∞, respectively. For general values of λ, we have

km = mπ

L
− 2π3λm3

L4
+ · · · m = 0, 1, . . . , L− 1. (19)

Since the asymptotic scaling of the km ∼ L−1 is the same for λ finite and for λ = ∞, even the
point λ = ∞ cannot be interpreted as being a transition point towards a different phase.

From equations (18) and (19) we see that the exact inverse leading relaxation time τ is
given by

τ−1 = 2dω(k1) � 2dπ2L−2
(
1 + O(L−2)

)
. (20)

In other words, the finite-size scaling amplitude

A := lim
L→∞

L2τ−1
L = 2dπ2 (21)

is independent of the particle production rate λ, confirming the hand-waving arguments
presented in section 2. We point out that the value of A is equal to the value of the finite-size
scaling amplitude of the leading relaxation time in the entire inactive phase in the pair contact
process [13]. An analogous universality holds for the entire spectrum of relaxation times
τ−1
m = 2dω(km).

Starting with a fully occupied lattice, the leading relaxation time is proportional to the
time needed to reach the steady state (13) with density ρ(∞) = 1/L, see equation (18). As an
immediate consequence (see section 4), the asymptotic decay of the particle density has to be
independent of λ as well. To verify this prediction, we performed Monte Carlo simulations.
As shown in figure 3, the production process affects the curves only in a limited time window.
Eventually all curves converge, demonstrating the universality of the long-time behaviour with
respect to λ.



Exact solution of a reaction–diffusion process with three-site interactions 1567

Figure 3. Particle density as a function of time for various values of λ. All curves converge to a
single one, demonstrating the irrelevance of the parameter λ.

4. Conclusions

We have seen that in our solvable coagulation–production model (2), the finite-size scaling
of the relaxations times τm and of the steady-state particle density ρ is independent of λ. We
have also shown how to understand this in a physical way. In addition, this result can also
be understood in the context of a recent extension [13] of the Privman–Fisher scaling forms
[14] (see [18] for a review) to the steady states of non-equilibrium phase transitions below
their upper critical dimension. In particular, for a one-dimensional reaction–diffusion system
of finite length L, the relaxation times τm should scale as (using the same notation as in [13])

τ−1
m = C0L

−z Rm

(
0, C2hL

1+z−β/ν⊥
)∣∣
h=0 (22)

and the steady-state particle density as

ρ = C2L
−β/ν⊥Y ′ (0, C2hL

1+z−β/ν⊥
) ∣∣

h=0 (23)

where β, ν⊥, z are the order parameter, correlation length and dynamical exponents, Rm and
Y ′ are universal scaling functions, h parametrizes an external source of particles, and C0, C2

are non-universal constants [13]. For the diffusion-coagulation model at hand (when λ = 0),
it is known that z = 2 and that the time scale can be fixed by choosing C0 = d [19]. The
λ independence of all the τm is therefore consistent with the expected universality of the Rm.
Furthermore, the steady-state density is given by ρ(∞) = 1/L, which implies that even the
generically non-universal constant C2 does not depend on λ and that β/ν⊥ = 1. A simple
scaling argument then shows that, in the limit L → ∞, also the time-dependent density

ρ(t) =
∑
m

ρ(m)e−t/τm �
t→∞ ρ0(dt)

−δ (24)

where δ = β/ν‖ = β/(ν⊥z) = 1
2 and the constant ρ0 is λ-independent. That is indeed what

we observe from figure 3.
Recall that in the pair contact process similar arguments demonstrate that C0 is not

renormalized through the effects of the interactions (see [10, 13] and references therein).
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However, the universality of the amplitude A in the pair contact process could only be
established numerically [13]. On the other hand, the universality of the relaxation times in the
annihilation–coagulation model 2A → ∅, A is trivial because of a similarity transformation
which reduces the model to simple diffusion–annihilation. We have therefore obtained the first
non-trivial analytic confirmation of the universality of the finite-size scaling amplitudes of the
correlation length.
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